报告题目:
Exterior Bernstein theorem for special Lagrangian equation(特殊拉格朗日方程的外伯恩斯坦定理)
报告摘要:
In this talk, we will present an exterior Bernstein theorem for special Lagrangian equations with supercritical phases: solutions over exterior domains must tend to quadratic polynomials at infinity with errors of the order of the fundamental solution of the Laplace equation. We will also discuss quadratic asymptotic behavior of solutions of generic fully nonlinear uniformly elliptic equations with convexity, of Monge-Amp\`{e}re equations (previously known as the exterior J\"{o}rgens-Calabi-Pogorelov theorem of L. A. Caffarelli & Y.-Y. Li), of quadratic Hessian equations, and of inverse harmonic Hessian equations over exterior domains. This is a joint work with Prof. Dongsheng Li & Prof. Yu Yuan.
报告人:Li Zhisu (李志夙)
School of Mathematics \& Center for Nonlinear Studies, Northwest University
(西北大学,金沙集团1862cc橙色/非线性科学研究中心)
报告地点:腾讯会议(472921672)
报告时间:2022.12.8 9:00-10:00
报告人简介:
李志夙,西北大学金沙集团1862cc橙色、非线性科学研究中心副教授。博士毕业于西安交通大学;曾在北京大学北京国际数学研究中心任助理研究员和博士后。主要研究方向为偏微分方程和微分几何。近期已有的研究成果主要涉及奇异完全非线性椭圆方程的 $W^{2,\delta}$ 正则性,海森商方程和特殊拉格朗日方程的外狄利克雷问题,以及一大类几何完全非线性退化椭圆方程的外刚性问题等;均分别以学术论文形式先后在Mathematische Zeitschrift,Journal of Differential Equations,Transactions of the American Mathematical Society和 Advances in Mathematics 等国际著名期刊上发表。