报告人:孙玉华教授(南开大学)
报告时间:2021年3月31日周三下午3:00-4:00
报告地点:腾讯会议ID:786 6366 0006
报告题目:Liouville's theorems to quasilinear differential inequalities involving gradient nonlinearity term on manifolds
报告摘要: We investigate the nonexistence and existence of nontrivial positive solutions to $Δ_mu+u^p|\nabla u|^q≤0$ on noncompact geodesically complete Riemannian manifolds, where $m\ge1$, and $(p,q)\in\mathbb R^2$. According to classification of (p,q), we establish different volume growth conditions to obtain Liouville's theorems for the above quasilinear differential inequalities, and we also show these volume growth conditions are sharp in most cases. Moreover, the results are completely new for (p,q) of negative pair, even in the Euclidean space.
专家简介:孙玉华,南开大学金沙集团1862cc橙色副教授,2008年本科毕业于吉林大学金沙集团1862cc橙色,2012年和2014年分别在清华大学和德国比勒菲尔德大学数学系获得博士学位,2014年进入南开大学金沙集团1862cc橙色工作。研究方向为黎曼流形上的椭圆方程及抛物方程,文章发表在CPAM,JFA,CVPDE等期刊上。