教授、博士、博士生导师
主要研究方向:流体力学中的偏微分方程理论,包括解的适定性问题,渐近极限问题等。最近的研究兴趣为流体自由边值问题,低马赫数极限及相关的奇异极限问题。
办公室:数学楼220 82507081&ou@ruc.edu.cn2004.8-2008.7 香港中文大学数学科学研究所,博士
2001.9-2004.6 中山大学数学与计算科学学院,硕士
1997.9-2001.6 中山大学数学与计算科学学院,本科
2018.6-至今 金沙集团1862cc橙色
2013.2- 2018.6金沙集团1862cc橙色信息学院
2010.9-2011.9 西班牙巴斯克应用数学中心,博士后
2010.7-2013.1 电子科技大学数学科学学院
2008.9-2010.7 北京应用物理与计算数学研究所,博士后
主持国家自然科学基金项目多项,教育部“新世纪优秀人才支持计划”项目一项,中国博士后基金特别资助项目一项、中国博士后基金面上项目一项;参与国家自然科学基金重点项目一项、国家自然科学基金国际合作交流项目一项。在J. Math, Pure. Appl.,SIAM J. Math. Anal.,ANIHP. - Anal. non lineaire, J. Differential Equations, Z. Angew. Math. Phys.等著名国际期刊发表学术论文30多篇。
论文代表作:
☆ Min Liang, Yaobin Ou*, The low Mach number limit of non-isentropic magnetohydrodynamic equations with large temperature variations in bounded domains. Sci. China Math., 67 (2024), 787–818.
☆ Xiaoyu Gu, Yaobin Ou*, On the incompressible and non-resistive limit of 3D compressible magnetohydrodynamic equations in bounded domains. Nonlinear Anal. Real World Appl. , 77 (2024), 104047, 23 pp.
☆ Xianpeng Hu, Yaobin Ou, Dehua Wang, Lu Yang, Incompressible limit for compressible viscoelastic flows with large velocity. Adv. Nonlinear Anal., 12 (2023), 20220324, 20 pp.
☆ Qiangchang Ju, Yaobin Ou*, Low Mach number limit of Navier-Stokes equations with large temperature variations in bounded domains. J. Math. Pures Appl., 164 (2022), 131–157.
☆ Yaobin Ou, Lu Yang, Incompressible limit of isentropic Navier-Stokes equations with ill-prepared data in bounded domains. SIAM J. Math. Anal. , 54 (2022), 2948–2989.
☆ Kunquan Li, Zilai Li, Yaobin Ou*, Global axisymmetric classical solutions of full compressible magnetohydrodynamic equations with vacuum free boundary and large initial data. Sci. China Math., 65 (2022), 471–500.
☆ Yaobin Ou, On globally large smooth solutions of full compressible Navier-Stokes equations with moving boundary and temperature-dependent heat-conductivity, Nonlinear Anal. Real World Appl., 64 (2022), 103430, 32 pp.
☆ Yaobin Ou, Low Mach and low Froude number limit for vacuum free boundary problem of all-time classical solutions of one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal., 53 (2021), 3265–3305.
☆ Yaobin Ou, Lu Yang, Incompressible limit of non-isentropic compressible magnetohydrodynamic equations with zero magnetic diffusivity in bounded domains. Nonlinear Anal. Real World Appl., 49 (2019), 1–23.
☆ Yaobin Ou, Pan Shi, Peter Wittwer, Large time behaviors of strong solutions to magnetohydrodynamic equations with free boundary and degenerate viscosity. J. Math. Phys. 59 (2018), 081510, 34 pp.
☆ Yaobin Ou, Global classical solutions to the 1-D vacuum free boundary problem for full compressible Navier-Stokes equations with large data. J. Math. Phys., 58 (2017), 011502, 21 pp.
☆ Dandan Ren, Yaobin Ou*, Incompressible limit of all-time solutions to 3-D full Navier-Stokes equations for perfect gas with well-prepared initial condition. Z. Angew. Math. Phys. 67 (2016), Art. 103, 27 pp
☆ Dandan Ren, Yaobin Ou, Incompressible limit and stability of all-time solutions to 3-D full Navier-Stokes equations for perfect gases. Sci. China Math., 59 (2016), 1395–1416.
☆ Changsheng Dou, Song Jiang, Yaobin Ou*, Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain, Journal of Differential Equations, 258 (2015), 379–398.
☆ Yaobin Ou, Huihui Zeng, Global strong solutions to the vacuum free boundary problem for compressible Navier–Stokes equations with degenerate viscosity and gravity force. Journal of Differential Equations, 259 (2015), 6803–6829.
☆ Yaobin Ou, Peicheng Zhu. The Vanishing viscosity method for the sensitivity analysis of an optimal control problem of conservation laws in the presence of shocks, Nonlinear Analysis: Real World Applications, 14 (2013), 1947-1974.
☆ Song Jiang and Yaobin Ou. Incompressible limit of the non-isentropic Navier–Stokes equations with well-prepared initial data in three-dimensional bounded domains, Journal de Mathématiques Pures et Appliquées, 96 (2011), 1-28.
☆ Yaobin Ou. Low Mach limit of viscous polytropic fluid flows, Journal of Differential Equations, 251 (2011), 2037-2065.
☆ J. Fan, S. Jiang, Y. Ou*, A blow-up criterion for compressible viscous heat-conductive flows, ANIHP. - Anal. non lineaire, 27 (2010), 337-350.
☆ Yaobin Ou. Incompressible limits of the Navier-Stokes equations for all time. J. Differential Equations, 247 (2009), 3295-3314.
金沙集团1862cc橙色吴玉章青年学者(2023)
北京市普通高校优秀毕业设计(论文)优秀指导教师(2020)
金沙集团1862cc橙色优秀本科毕业论文(设计)优秀指导教师(2020)
金沙集团1862cc橙色杰出学者青年学者A岗(2017)
教育部“新世纪优秀人才支持计划”(2012)
电子科技大学“百人计划”(2011)