尊敬的 老师:
金沙集团1862cc橙色2018年秋季几何分析研讨会将于11月3日召开。这次会议我们邀请了一些几何分析方向的青年学者,旨在为该领域学者们提供一个交流的平台,研讨本领域中的前沿问题及其进展。我们诚挚邀请您和您的学生参加此次会议。
此次会议由国家自然科学基金支持,不收取注册费。鉴于财力,请与会者自己承担食宿。
会议安排如下:
时间:11月3日 |
地点:金沙集团1862cc橙色信息楼343 |
主持人 |
8:00-8:40 |
注册 |
朱晓宝 |
8:45-8:50 |
开幕式 |
|
8:50-9:00 |
合影 |
|
9:00-9:45 |
韩小利报告 |
杨云雁 |
9:55-10:40 |
何玲报告 |
|
10:40-11:00 |
茶歇 |
|
11:00-11:45 |
周春琴报告 |
|
12:00-14:00 |
午饭 |
朱晓宝 |
14:00-17:00 |
自由讨论 |
|
17:00 |
离会 |
杨云雁 朱晓宝
金沙集团1862cc橙色
2018年10月29日
报告题目与摘要
报 告 人:韩小利(清华大学)
报告题目:纤维丛上的曲率流
报告摘要:我们定义线丛上的平均曲率,然后引进线丛上的平均曲率流。主要介绍平均曲率流的单调公式,自相似解,以及ε正则性定理。
报 告 人:何玲(天津大学)
报告题目:Symplectic critical surfaces with parallel normalized mean curvature vector in two-dimensional complex space forms
报告摘要:In this paper, we obtain a sufficient and necessary condition for the existence of symplectic critical surfaces with parallel normalized mean curvature vector in two-dimensional complex space forms. Explicitly, we find that there does not exist any symplectic critical surface with parallel normalized mean curvature vector in two-dimensional complex space forms of non-zero constant holomorphic sectional curvature. And there exists and only exists a two-parameters family of symplectic critical surfaces with parallel normalized mean curvature vector in two-dimensional complex plane, which are rotationally symmetric.
报 告 人:周春琴(上海交通大学)
报告题目:Liouville type equation with Neumann boundary condition and with singular data
报告摘要:In this talk, we will talk about the blow-up behaviors of solutions to the singular Liouville type equation with exponential Neumann boundary condition. We generalize the Brezis-Merle type concentration-compactness theorem to this Neumann problem. Then along the line of the Li-Shafrir type quantization property we show that the blow-up value $m(0) \in 2\pi\N \cup \{ 2\pi(1+\alpha)+2\pi (\N\cup \{0\})\}$ if the singular point 0 is a blow-up point. In the end, when the boundary value of solutions has an additional condition, we can obtain the precise blow-up value $m(0)=2\pi(1+\alpha)$.