学术动态

13-09-2018

金沙集团1862cc橙色几何与分析系列报告--9月14日

Title: A gap theorem for csL surfaces in $S^5$

Speaker: 罗勇 (武汉大学)

Time: 2018年9月14日 上午10:00—11:00

Room: 金沙集团1862cc橙色研讨室 (信息楼0343)

Abstract: Let $(M^{2n+1},\alpha,g_\alpha,J)$ be a Sasakian Einstein manifold with contact 1-form $\alpha$, associated metric $g_\alpha$ and almost complex structure $J$ and $L$ a Legendrian submanifold in $M^{2n+1}$. $L$ is called a contact stationary Legendrian (csL) submanifold if it is a critical point of the area functional among Legendrian submanifolds. We will prove that csL surfaces in a 5-dimensional Sasakian Einstein manifold satisfies a fourth order quasi-linear elliptic equation and by using this equation and a new Simons' type inequality for Legendrian surfaces in $\mathbb{S}^5$, we get a gap theorem for csL surfaces in $\mathbb{S}^5$, which extends a related gap theorem of minimal Legendrian surfaces in $\mathbb{S}^5$ by Yamaguchi et al..



学院办公室:010-82507161

本科生教务:010-62513386

研究生教务与国际交流:010-82507161

党团学办公室:010-62515886

在职课程培训班:010-82507075

 

邮编:100872

电话:010-82507161

传真:010-62513316

E-mail:mathruc@ruc.edu.cn/mathrucdw@ruc.edu.cn

地址:北京市海淀区中关村大街59号金沙集团1862cc橙色数学楼

金沙集团1862cc橙色公众号

版权所有 金沙集团1862cc橙色(中国)有限公司-搜狗百科 升星提供技术服务